Mice expressing a mutant desmosomal cadherin exhibit abnormalities in desmosomes, proliferation, and epidermal differentiation
نویسندگان
چکیده
Desmogleins are members of the cadherin superfamily which form the core of desmosomes. In vitro studies indicate that the cytoplasmic domain of desmogleins associates with plakoglobin; however, little is known about the role of this domain in desmosome recognition or assembly in vivo, or about the possible relation of desmoglein mutations to epidermal differentiation and disease. To address these questions we used transgenic mouse technology to produce an NH2-terminally truncated desmoglein (Pemphigus Vulgaris Antigen or Dsg3) in cells known to express its wild-type counterpart. Within 2 d, newborn transgenic animals displayed swelling of their paws, flakiness on their back, and blackening of the tail tip. When analyzed histologically and ultrastructurally, widening of intercellular spaces and disruption of desmosomes were especially striking in the paws and tail. Desmosomes were reduced dramatically in number and were smaller and often peculiar in structure. Immunofluorescence and immunoelectron microscopy revealed no major abnormalities in localization of hemidesmosomal components, but desmosomal components organized aberrantly, resulting in a loss of ultrastructure within the plaque. In regions where desmosome loss was prevalent but where some adhesive structures persisted, the epidermis was thickened, with a marked increase in spinous and stratum corneum layers, variability in granular layer thickness, and parakeratosis in some regions. Intriguingly, a dramatic increase in cell proliferation was also observed concomitant with biochemical changes, including alterations in integrin expression, known to be associated with hyperproliferation. An inflammatory response was also detected in some skin regions. Collectively, these findings demonstrate that a mutation in a desmoglein can perturb epidermal cell-cell adhesion, triggering a cascade of changes in the skin.
منابع مشابه
Desmoglein 4 in Hair Follicle Differentiation and Epidermal Adhesion Evidence from Inherited Hypotrichosis and Acquired Pemphigus Vulgaris
Cell adhesion and communication are interdependent aspects of cell behavior that are critical for morphogenesis and tissue architecture. In the skin, epidermal adhesion is mediated in part by specialized cell-cell junctions known as desmosomes, which are characterized by the presence of desmosomal cadherins, known as desmogleins and desmocollins. We identified a cadherin family member, desmogle...
متن کاملSuprabasal desmoglein 3 expression in the epidermis of transgenic mice results in hyperproliferation and abnormal differentiation.
The desmoglein 1 (Dsg1) and desmocollin 1 (Dsc1) isoforms of the desmosomal cadherins are expressed in the suprabasal layers of epidermis, whereas Dsg3 and Dsc3 are more strongly expressed basally. This differential expression may have a function in epidermal morphogenesis and/or may regulate the proliferation and differentiation of keratinocytes. To test this hypothesis, we changed the express...
متن کاملPemphigus vulgaris antigen, a desmoglein type of cadherin, is localized within keratinocyte desmosomes
Pemphigus vulgaris antigen (PVA) is a member of the desmoglein subfamily of cadherin cell adhesion molecules. Because autoantibodies in this disease cause blisters due to loss of epidermal cell adhesion, and because desmoglein is found in the desmosome cell adhesion junction, we wanted to determine if PVA is also found in desmosomes. By immunofluorescence, PV IgG bound, in a dotted pattern, to ...
متن کاملPerturbed desmosomal cadherin expression in grainy head-like 1-null mice.
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial...
متن کاملDesmosomal cadherin misexpression alters beta-catenin stability and epidermal differentiation.
Desmosomal adhesion is important for the integrity and protective barrier function of the epidermis and is disregulated during carcinogenesis. Strong adhesion between keratinocytes is conferred by the desmosomal cadherins, desmocollin (Dsc) and desmoglein. These constitute two gene families, members of which are differentially expressed in epidermal strata. It has been suggested that this strat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 133 شماره
صفحات -
تاریخ انتشار 1996